Differential analysis of fluid flow

Sometimes the control volume of interest is infinitesimally small
(a point in space rather than to a 2D or 3D volume)

—> Differential analysis rather than finite control volume analysis



Types of motion and deformation for a fluid element.

Element at 7, Element at 7, + &1
==
r /
[
I r; | | r——————— | __———"
' I \ ——
j; | | | L \ I
| - '/I = l | I + \1‘ \1'1 + / /
L—" (R | /
I \ o / J—
i _—— -
General Translation Linear Rotation Angular

motion deformation deformation



Velocity and acceleration field
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where the operator

is termed material derivative. In vector notation: D()_ E;U rV-V)[]
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where the gradient operator is



Translation of a fluid element.

If the velocity, V, is the same for all fluid elements, we have translation
without deformation




Linear deformation of a fluid element.
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Angular motion and deformation of a fluid element.
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Rotation vector and vorticity
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Example: vorticity
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Angular deformation and shearing strain
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Differential form of the conservation of mass equation.
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Example: 3D steady, incompressible flow
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Velocity components in cylindrical polar coordinates.
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Stream function
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Stream function property #1
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Stream function property #2
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Stream function in cylindrical coordinates
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Example: stream function
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