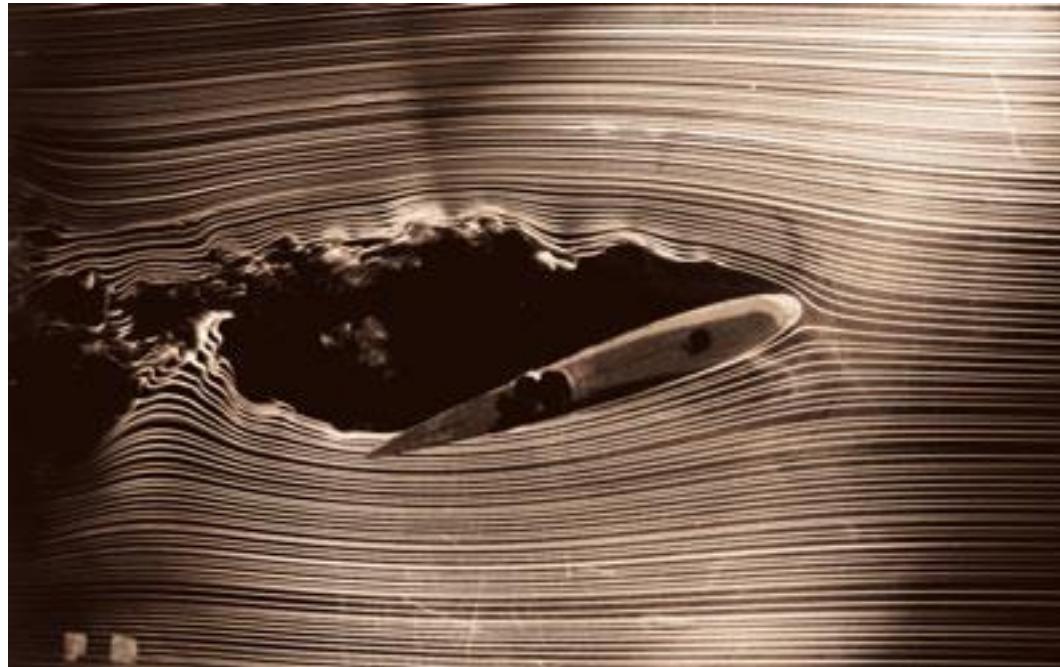


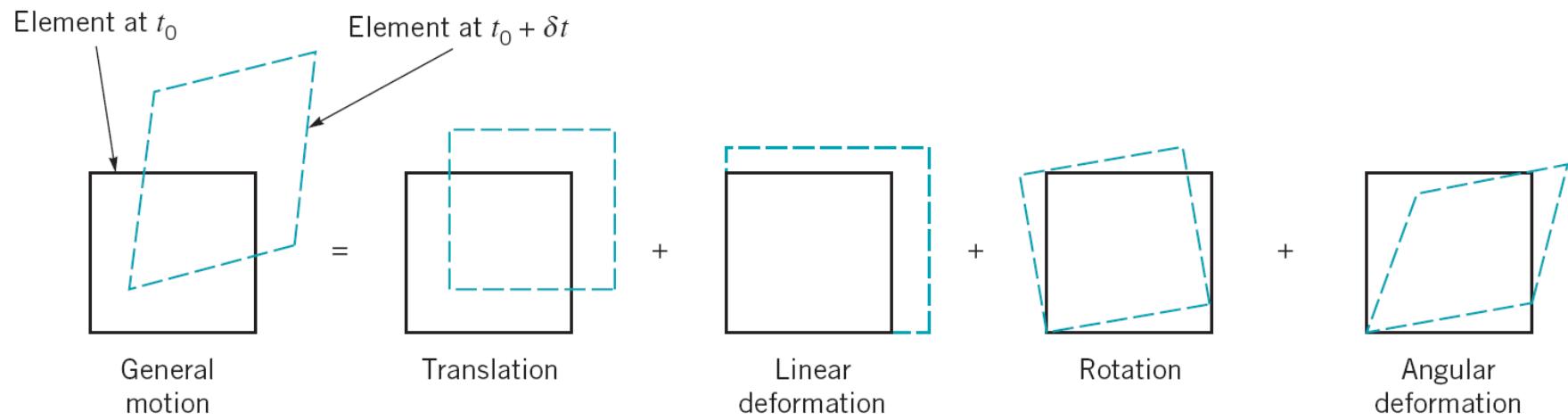
Differential analysis of fluid flow



Sometimes the control volume of interest is infinitesimally small
(a point in space rather than to a 2D or 3D volume)

→ Differential analysis rather than finite control volume analysis

Types of motion and deformation for a fluid element.



Velocity and acceleration field

Velocity: $\vec{V} = u\vec{i} + v\vec{j} + w\vec{k}$

Acceleration: $\vec{a} = \frac{\partial \vec{V}}{\partial t} + u\frac{\partial \vec{V}}{\partial x} + v\frac{\partial \vec{V}}{\partial y} + w\frac{\partial \vec{V}}{\partial z}$

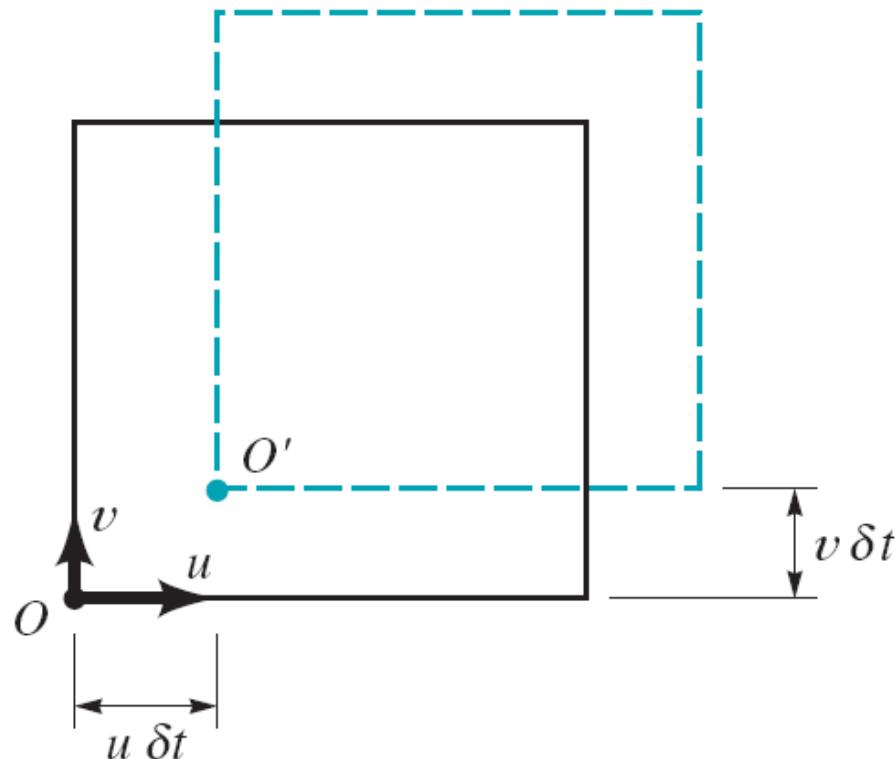
The acceleration is concisely expressed as: $\vec{a} = \frac{D\vec{V}}{Dt}$

where the operator $\frac{D(\cdot)}{Dt} = \frac{\partial(\cdot)}{\partial t} + u\frac{\partial(\cdot)}{\partial x} + v\frac{\partial(\cdot)}{\partial y} + w\frac{\partial(\cdot)}{\partial z}$

is termed **material derivative**. In vector notation: $\frac{D(\cdot)}{Dt} = \frac{\partial(\cdot)}{\partial t} + (\vec{V} \cdot \vec{\nabla})(\cdot)$

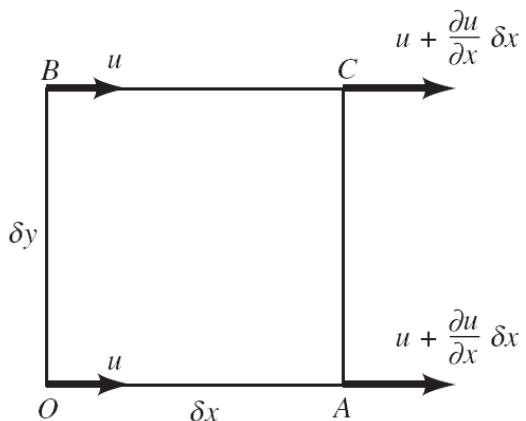
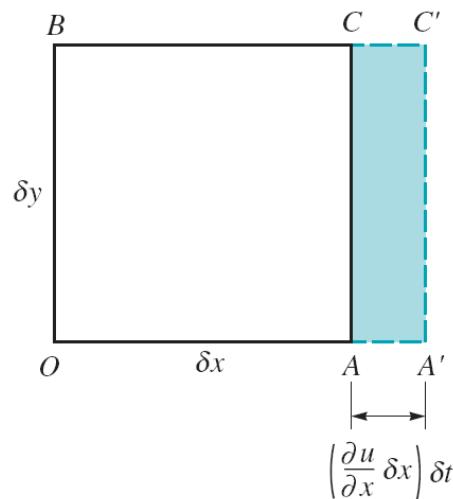
where the gradient operator is $\vec{\nabla}(\cdot) = \frac{\partial(\cdot)}{\partial x}\vec{i} + \frac{\partial(\cdot)}{\partial y}\vec{j} + \frac{\partial(\cdot)}{\partial z}\vec{k}$

Translation of a fluid element.



If the velocity, V , is the same for all fluid elements, we have **translation** without deformation

Linear deformation of a fluid element.



If velocity gradients are present
→ deformation

Fluid element volume: $\delta V = \delta x \delta y \delta z$

Change in $\delta V = \left[\left(\frac{\partial u}{\partial x} \delta x \right) \delta t \right] \delta y \delta z$

Rate of change of volume per unit volume:

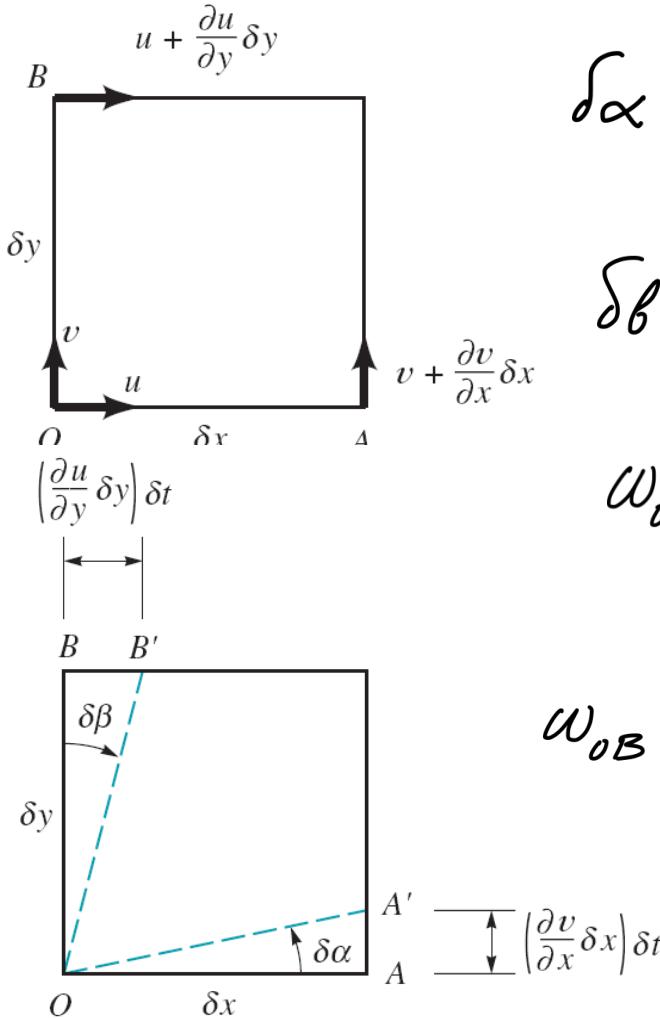
$$\frac{1}{\delta V} \frac{d(\delta V)}{dt} = \frac{1}{\delta x \delta y \delta z} \lim_{\delta t \rightarrow 0} \frac{\frac{\partial u}{\partial x} \delta x \cdot \delta y \cdot \delta z \delta t}{\delta t} = \frac{\partial u}{\partial x}$$

In general,

$$\frac{1}{\delta V} \frac{d(\delta V)}{dt} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = \vec{\nabla} \cdot \vec{v}$$

Volumetric dilatation rate

Angular motion and deformation of a fluid element.



$$\delta \alpha \simeq \tan \alpha = \frac{\frac{\partial v}{\partial x} \delta x \delta t}{\delta x} = \frac{\partial v}{\partial x} \delta t$$

$$\delta \beta \simeq \tan \beta = \frac{\frac{\partial u}{\partial y} \delta y \delta t}{\delta y} = \frac{\partial u}{\partial y} \delta t$$

$$\omega_{OA} = \lim_{\delta t \rightarrow 0} \frac{\delta \alpha}{\delta t} = \frac{\partial v}{\partial x} \quad \text{if } \frac{\partial v}{\partial x} > 0 \rightarrow \text{CCW}$$

$$\omega_{OB} = \lim_{\delta t \rightarrow 0} \frac{\delta \beta}{\delta t} = \frac{\partial u}{\partial y} \quad \text{if } \frac{\partial u}{\partial y} > 0 \rightarrow \text{CW}$$

By convention:
 CCW is positive

Rotation vector and vorticity

Definition of rotation: $\omega_z = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$

Similarly: $\omega_x = \frac{1}{2} \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right)$

$$\omega_y = \frac{1}{2} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right)$$

$$\vec{\omega} = \omega_x \vec{i} + \omega_y \vec{j} + \omega_z \vec{k}$$

$$\vec{\omega} = \frac{1}{2} \operatorname{curl} \vec{v} = \frac{1}{2} \vec{\nabla} \times \vec{v}$$

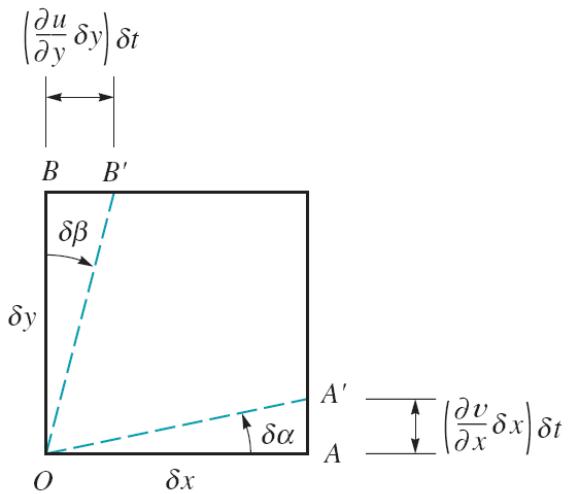
$$\frac{1}{2} \vec{\nabla} \times \vec{v} = \frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u & v & w \end{vmatrix}$$

$$= \frac{1}{2} \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right) \hat{i} + \frac{1}{2} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right) \hat{j} + \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \hat{k}$$

Define vorticity $\vec{j} = 2 \vec{\omega} = \vec{\nabla} \times \vec{v}$

Remarks: a) if $\omega_{0A} = -\omega_{0B}$ or $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

→ rotation as an undeformed block;
otherwise: angular deformation



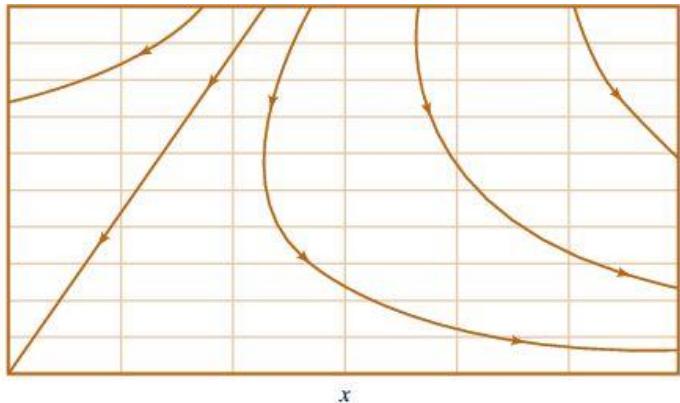
b) When $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$

$$\omega_z = \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) = 0$$

rotation around z-axis is zero

In general, when $\vec{\nabla} \times \vec{V} = 0 \rightarrow \vec{\omega} = \vec{\gamma} = 0$
 → Irrotational flow

Example: vorticity



Flow field with $u = 4xy$
 $v = 2(x^2 - y^2)$
 $w = 0$

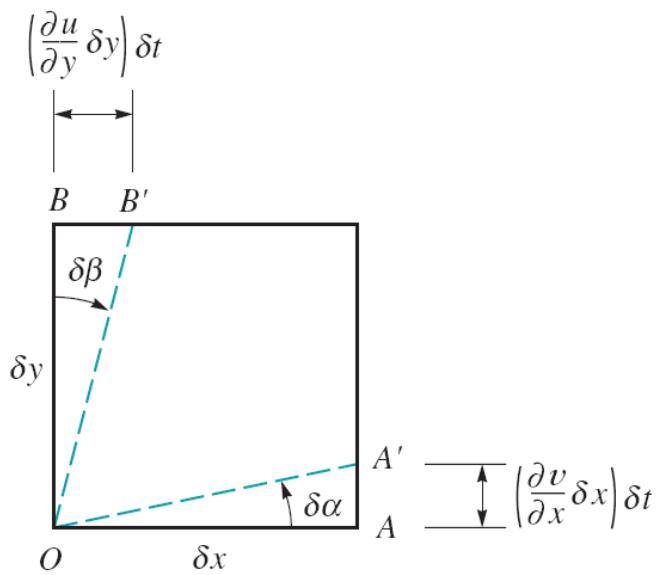
Is the flow field irrotational?

This is a 2-D flow field ($w=0$). Hence
 $\omega_x = \omega_y = 0$ (check!)

$$\omega_z = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) = \frac{1}{2} (4x - 4x) = 0$$

The flow field is irrotational.

Angular deformation and shearing strain



Rate of angular deformation

The change in the original right angle (90°) between OA and OB , $\delta\gamma$

$$\delta\gamma = \delta\alpha + \delta\beta$$

Rate of change of $\delta\gamma$ or shearing strain, j , is

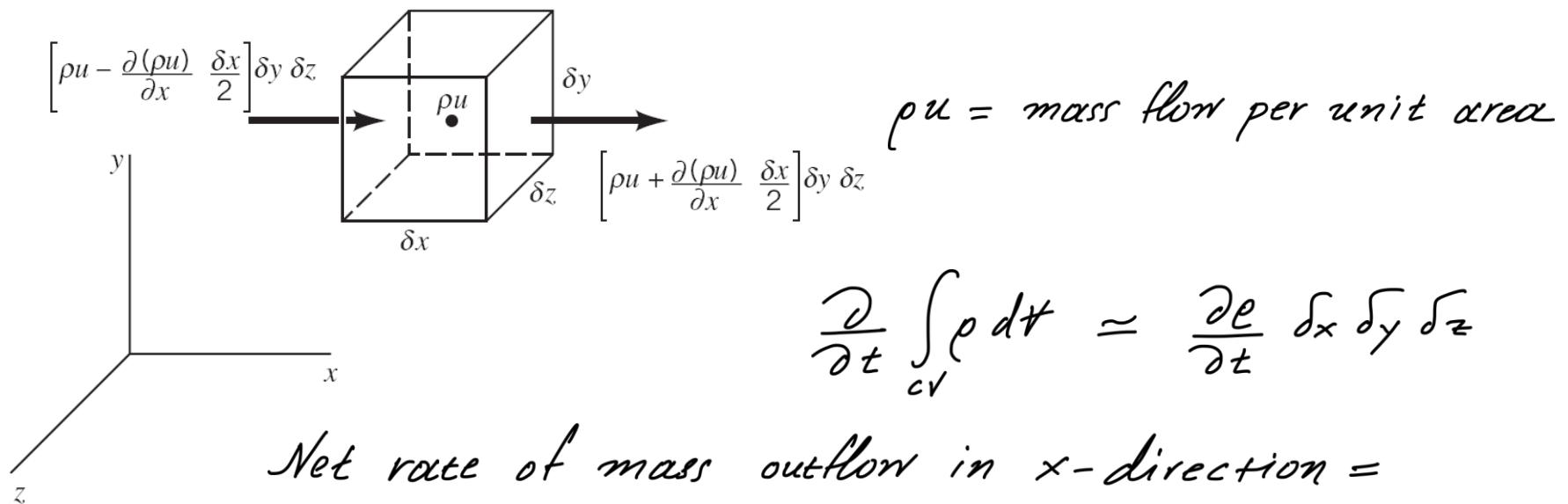
$$\lim_{\delta t \rightarrow 0} \frac{\delta j}{\delta t} = \lim_{\delta t \rightarrow 0} \left[\frac{\frac{\partial v}{\partial x} \delta t + \frac{\partial u}{\partial y} \delta t}{\delta t} \right]$$

$$\Rightarrow j = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}$$

Differential form of the conservation of mass equation.

Conservation of mass: $\frac{\partial}{\partial t} \int_{cv} \rho dt + \int_{cs} \vec{\rho} \cdot \vec{n} dA = 0 \quad (1)$

Differential form of the continuity equation



$$\frac{\partial}{\partial t} \int_{cv} \rho dt \simeq \frac{\partial \rho}{\partial t} \delta x \delta y \delta z \quad (2)$$

Net rate of mass outflow in x -direction =

= rate of mass outflow - rate of mass inflow

$$= \left[\rho u + \frac{\partial(\rho u)}{\partial x} \frac{\delta x}{2} \right] \delta y \delta z - \left[\rho u - \frac{\partial(\rho u)}{\partial x} \frac{\delta x}{2} \right] \delta y \delta z$$

$$= \frac{\partial(\rho u)}{\partial x} \delta x \delta y \delta z$$

$$x\text{-direction: } \frac{\partial(\rho u)}{\partial x} \delta x \delta y \delta z$$

$$y\text{-direction: } \frac{\partial(\rho v)}{\partial y} \delta x \delta y \delta z$$

$$z\text{-direction: } \frac{\partial(\rho w)}{\partial z} \delta x \delta y \delta z$$

Net rate of mass outflow:

$$\underline{\left[\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} + \frac{\partial(\rho w)}{\partial z} \right] \delta x \delta y \delta z} \quad (3)$$

$$\underline{(1), (2) \text{ and } (3) \Rightarrow \frac{\partial \rho}{\partial t} + \frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} + \frac{\partial(\rho w)}{\partial z} = 0}$$

Conservation of mass or continuity

In vector notation:

$$\underline{\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) = 0}$$

Special cases: 1) Steady flow $\vec{\nabla} \cdot (\rho \vec{v}) = 0$

$$\text{or } \frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} + \frac{\partial(\rho w)}{\partial z} = 0$$

2) Incompressible flow ($\rho = ct$)

$$\vec{\nabla} \cdot \vec{v} = 0 \quad \text{or } \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

Example: 3D steady, incompressible flow

Velocity components in a steady and incompressible flow field:

$$u = x^2 + y^2 + z^2$$

$$v = xy + yz + z$$

$$w = ?$$

Solution: To satisfy the continuity equation for steady and incompressible flow:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

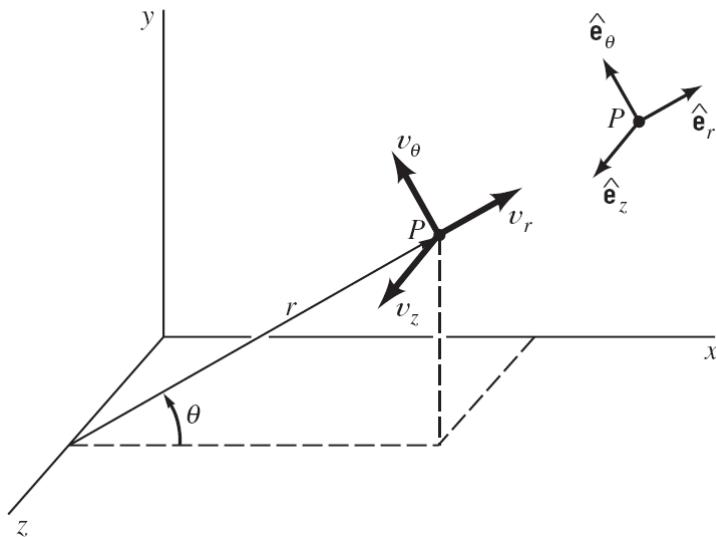
$$\Rightarrow 2x + (x+z) + \frac{\partial w}{\partial z} = 0$$

$$\Rightarrow \frac{\partial w}{\partial z} = -2x - (x+z) = -3x - z$$

$$\Rightarrow w = -3xz - \frac{1}{2}z^2 + f(x, y)$$

need more
info to define

Velocity components in cylindrical polar coordinates.



Continuity eq. in cylindrical coordinates:

$$\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial (r \rho v_r)}{\partial r} + \frac{1}{r} \frac{\partial (\rho v_\theta)}{\partial \theta} + \frac{\partial (\rho v_z)}{\partial z} = 0$$

For incompressible flow (steady or unsteady):

$$\frac{1}{r} \frac{\partial (r v_r)}{\partial r} + \frac{1}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{\partial v_z}{\partial z} = 0$$

Stream function

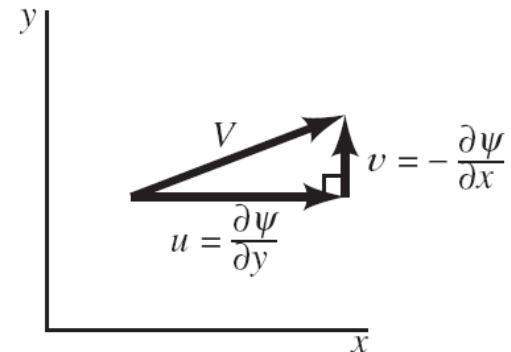
For 2-D flow $\vec{V} = u\hat{i} + v\hat{j}$

For steady, incompressible, 2-D flow,
the continuity equation is:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Define **stream function** $\Psi(x, y)$ such as

$$u = \frac{\partial \Psi}{\partial y} \quad \text{and} \quad v = -\frac{\partial \Psi}{\partial x}$$



Continuity:
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = \frac{\partial}{\partial x} \left(\frac{\partial \Psi}{\partial y} \right) + \frac{\partial}{\partial y} \left(-\frac{\partial \Psi}{\partial x} \right)$$
$$= \frac{\partial^2 \Psi}{\partial x \partial y} - \frac{\partial^2 \Psi}{\partial x \partial y} \equiv 0$$

\therefore When Ψ exists \Rightarrow continuity is satisfied

Stream function property #1

Lines along which $\Psi = ct$ are streamlines

Streamline: line tangent to \vec{V}

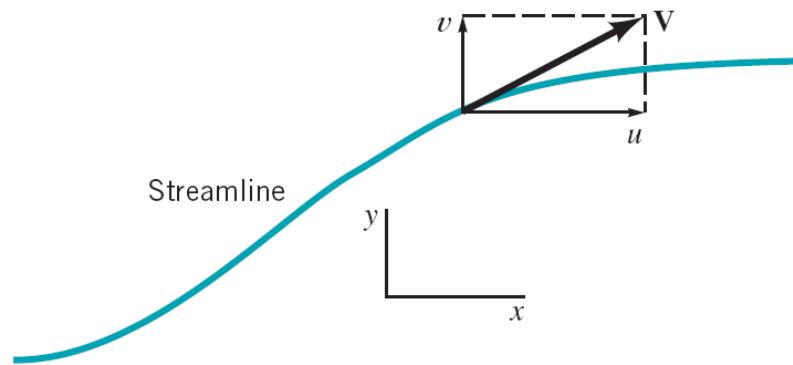
$$\frac{dy}{dx} = \frac{v}{u}$$

$$\begin{aligned} d\Psi &= \frac{\partial \Psi}{\partial x} dx + \frac{\partial \Psi}{\partial y} dy \\ &= -v dx + u dy \end{aligned}$$

When $\Psi = ct \Rightarrow d\Psi = 0$

$$\Rightarrow -v dx + u dy = 0$$

$$\Rightarrow \underline{\underline{\frac{dy}{dx} = \frac{v}{u}}} \quad \text{streamline!}$$



Plot $\Psi(x, y)$ to visualize the flow field

Note: Ψ defined within a constant.

Stream function property #2

Change in the value of Ψ between two streamlines equals the volume rate of flow

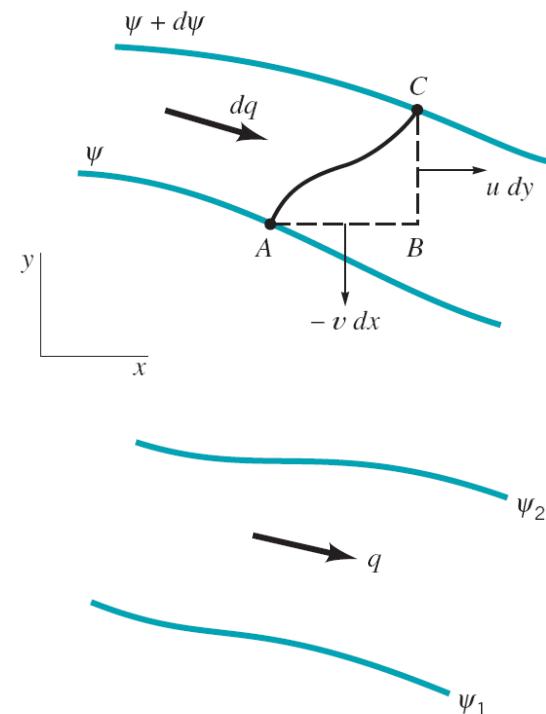
Flow never crosses streamlines $\vec{V} \parallel \Psi$

$$dq = -v dx + u dy$$

inflow outflow

$$\Rightarrow dq = \frac{\partial \Psi}{\partial x} dx + \frac{\partial \Psi}{\partial y} dy = d\Psi$$

$$\Rightarrow q = \int_{\Psi_1}^{\Psi_2} d\Psi = \Psi_2 - \Psi_1$$



Note: if $\Psi_2 > \Psi_1 \rightarrow$ flow from left to right
if $\Psi_2 < \Psi_1 \rightarrow$ flow from right to left

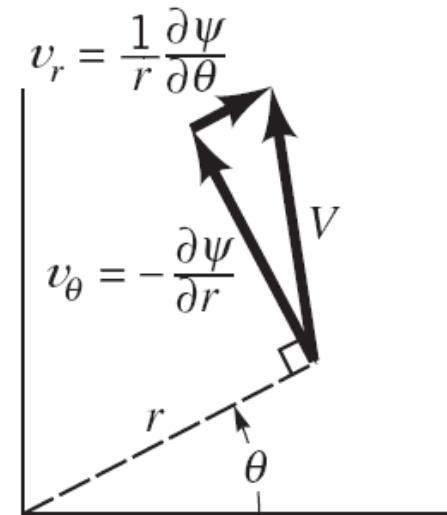
Stream function in cylindrical coordinates

In cylindrical coordinates:

Continuity: $\frac{1}{r} \frac{\partial(r v_r)}{\partial r} + \frac{1}{r} \frac{\partial v_\theta}{\partial \theta} = 0$

$$v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$$

$$v_\theta = - \frac{\partial \psi}{\partial r}$$



Example: stream function

Steady, incompressible 2-D flow with:

$$u = 2y$$

$$v = 4x$$

a) $\psi = ?$

b) Streamlines?

c) Direction of flow

$$u = \frac{\partial \psi}{\partial y} = 2y \Rightarrow \psi = y^2 + f(x) \quad (1)$$

$$v = -\frac{\partial \psi}{\partial x} = 4x \Rightarrow \frac{\partial \psi}{\partial x} = -4x \quad (2)$$

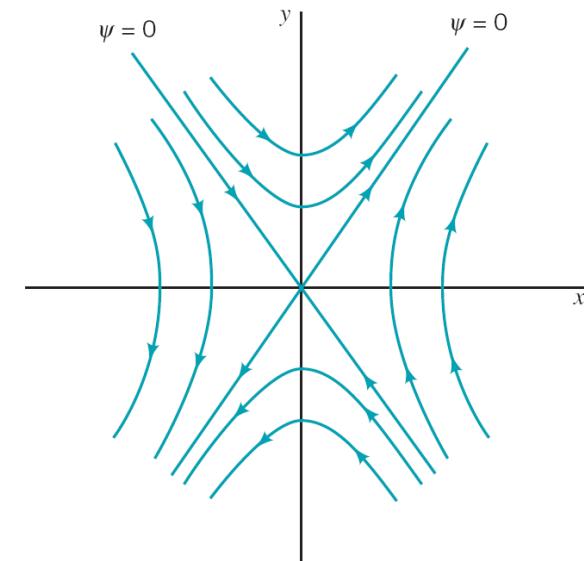
$$(1) \wedge (2) \Rightarrow \frac{df}{dx} = -4x \Rightarrow f = -2x^2 + c \quad (3)$$

c is arbitrary; let $c=0$ for simplicity

$$(1) \wedge (3) \Rightarrow \underline{\underline{\psi = y^2 - 2x^2}}$$

$$\text{For } \psi = 0 \Rightarrow y^2 - 2x^2 = 0 \Rightarrow y = \pm \sqrt{2}x$$

$$\text{In general, } \underline{\underline{\frac{y^2}{\psi} - \frac{x^2}{\psi/2} = 1}} \quad \text{hyperbola}$$



Direction of flow:
 $v = 4x$

So, for $x > 0$ flow is upwards